fyqt.net
当前位置:首页 >> lim sinx 2tAnx >>

lim sinx 2tAnx

原式=…=e^{lim(x->π/2)[ln(sinx)/cotx]} 继续其中lim(x->π/2)[ln(sinx)/cotx]} =lim(x->π/2)[ln(sinx)/cosx]【已确定sinx→1】 =lim(x->π/2)[-cosx/sin²x)]【用的洛必达法则】 =0, 所以原极限=e^0=1。

解:∵(sinx)^tanx=e^[(tanx)lnsinx]=e^[(sinx)(lnsinx)/cosx], ∴原式=e^[lim(x→π/2)(sinx)(lnsinx)/cosx]。而lim(x→π/2)(sinx)(lnsinx)/cosx]=0, ∴原式=1。 供参考。

0/0型的极限不能随便拆项,因为这样可能造成上下无穷小的阶发生变化。 lim〔x→0〕(tanx-sinx)/x² =lim〔x→0〕(1-cosx)sinx/x²cosx =lim〔x→0〕(sin²x)sinx/x²cosx(1+cosx) =0/2 =0

lim(x→∞) sinx / x^2=0 考虑 |sinx/x^2-0| ≤|1/x^2| 先限定x的范围:|x|>1,于是有|x|X,就有|sinx/x^2-0|

解法一:∵lim(x->π/2)[(sinx-1)tanx] =lim(x->π/2){[(sinx-1)/cosx]sinx} =lim(x->π/2)[(sinx-1)/cosx]*lim(x->π/2)(sinx) =lim(x->π/2){[sin(x/2)-cos(x/2)]/[cos(x/2)+sin(x/2)]}*1 =0*1 =0 lim(x->π/2){(sinx)^[1/(sinx-1)]} =lim(x->π/2){(1...

解法一:∵lim(x->π/2)[(sinx-1)tanx] =lim(x->π/2){[(sinx-1)/cosx]sinx} =lim(x->π/2)[(sinx-1)/cosx]*lim(x->π/2)(sinx) =lim(x->π/2){[sin(x/2)-cos(x/2)]/[cos(x/2)+sin(x/2)]}*1 =0*1 =0 lim(x->π/2){(sinx)^[1/(sinx-1)]} =lim(x->π/2){(1...

lim(tanx-sinx/sin³x)=lim(1-cosx)/sin²x=lim 2sin²(x/2)/sin²x=(x²/2)/x²=1/2 x→0

你好!只要上下同除以x就可利用特殊极限计算了。经济数学团队帮你解答,请及时采纳。谢谢!

=limtanx(cosx-1)(³√(1+x^2)²+³√(1+x^2)+1)(√(1+sinx)+1)/x^2sinx =limtanx(-sin²x)(³√(1+x^2)²+³√(1+x^2)+1)(√(1+sinx)+1)/x^2sinx(cosx+1) =-(1+1+1)(1+1)/(1+1) =-3

网站首页 | 网站地图
All rights reserved Powered by www.fyqt.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com