fyqt.net
当前位置:首页 >> F x Ax sinx Cosx >>

F x Ax sinx Cosx

证: f'(x)=cosx+sinx- 2/π =√2sin(x+π/4)- 2/π 令f'(x)≥0 √2sin(x+π/4)≥2/π sin(x+π/4)≥√2/π x∈(0,π) 函数f(x)的单调递增区间为(0,3π/4 -arcsin(√2/π)] 函数f(x)的单调递减区间为[3π/4 -arcsin(√2/π),π) 只需考察两边界 f(0)=sin0-cos0-(2/π...

由f(x)=ax+sinx+cosx,得f′(x)=a+cosx-sinx,设A(x1,y1),B(x2,y2),则f′(x1)=a+cosx1-sinx1,f′(x2)=a+cosx2-sinx2.由f′(x1)f′(x2)=-1,得a2+[(cosx1-sinx1)+(cosx2-sinx2)]a+(cosx1-sinx1)(cosx2-sinx2)+1=0.令m=cosx...

C ∵f′(x)=[(ax+b)sinx]′+[(cx+d)cosx]′=(ax+b)′sinx+(ax+b)(sinx)′+(cx+d)′cosx+(cx+d)(cosx)′=asinx+(ax+b)cosx+ccosx-(cx+d)sinx=(a-d-cx)sinx+(ax+b+c)cosx.为使f′(x)=xcosx,应满足 解方程组,得 从而可知,f(x)...

(Ⅰ)∵函数f(x)=sinx-cosx+1.设函数F(x)=sinx-cosx+1-ax,∴F′(x)=cosx+sinx-a∵f(x)≥ax在[0,π]上恒成立,∴函数F(x)=sinx-cosx+1-ax≥F(0)=0,∴只需F′(x)=cosx+sinx-a≥0恒成立,即:a≤(sinx+cosx)min,∵sinx+cosx=2sin(x+π4),...

设函数f(x)=ax+sinx+cosx.若函数f(x)的图象上存在不同的两点A,B,使得曲线y= f(x)在点A,B处的切线互相垂直,则实数a的取值范围为 f(x)=ax+sinx+cosx, f'(x)=a+cosx-sinx, f(x)的图象上存在不同的两点A(x1,*),B(x2,*),使得曲线y=f(x)在点...

1、f(x)'=asinx+axcosx-sinx 所以K=f(兀/4)'=√2/2*a+兀/4*a*√2/2-√2/2=√2兀/8 所以a=1 即f(x)'=sinx+xcosx-sinx=xcosx (1)当x在[-兀,-兀/2),f(x)'大于0,f(X)为增函数 (2)当x在 (-兀/2,0],f(x)'小于0,f(X)为减函数 (3)当x在[0...

答案如图所示,友情提示:点击图片可查看大图 答题不易,且回且珍惜 如有不懂请追问,若明白请及时采纳,祝学业有成O(∩_∩)O~~~

(1)f(x)=sinx-cosx-ax (0

(Ⅰ)由题意得,cosxx=0(x>0),则cosx=0,∴x=π2+kπ,则xn=π2+(n?1)π,∴数列{xn}是以π为公差、以π2为首项的等差数列,则Sn=nπ2+n(n?1)π2=n2π2;(Ⅱ)∵f(x)≥g(x)在x∈(0,+∞)上恒成立,∴cosxx≥sinx?ax,得a≥xsinx?cosxx2,设φ(x)=xsinx?...

(1)由f(x)=sinx-cosx+x+1=2sin(x?π4)+x+1,0<x<2π,知f′(x)=1+2sin(x+π4).令f′(x)=0,从而可得sin(x+π4)=-22,解得x=π,或x=3π2,当x变化时,f′(x),f(x)变化情况如下表: x (0,π) π (π,3π2) 3π2 f′(x) + 0 - 0 + ...

网站首页 | 网站地图
All rights reserved Powered by www.fyqt.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com